Clinical Informatics and Data Visualisation: Rich Data Interfaces and The Electronic Patient Record

David Rew MA MChir (Cambridge) FRCS (London) Consultant Surgeon, Southampton
From Ambition to Reality with Clinical Informatics

• “There is a seismic shift in the way information can improve the experience, quality and outcomes of health and care services.....

• To achieve this, the health and social care system will need to maximise the use of technology so information can move more freely and securely around the system.

• The information strategy “The Power of Information” sets out a 10-year framework for transforming information for the NHS, public health and social care”.

Department of Health: Informatics: The Future (July 2012)
Realities: The view from the Clinical Coal Face (1)

• An expensive history of unfulfilled ambitions in Health Informatics over 30 years

• Health is a complex & heterogenous “informatics space”

• Interactions between health professionals & patients are infinitely nuanced, non-linear and difficult to capture in IT design

• Individual medical histories involve multiple clinical activities in serial & parallel over many decades

• Limited commercial & institutional effort has been put into clinical user research, needs & engagement
Realities: The view from the Clinical Coal Face (2)

- Clinical Informatics uptake by compulsion (push) rather than user demand (pull)

 - Limited end-user “buy-in” to existing systems

- Huge risk & new forms of inefficiency!

 - A recipe for misdirected public sector expenditure & institutional reputational upset
The Design Challenge
to improve the user experience

- The move from paper to electronic formats is as intellectually testing & transformative as from cave paintings -> papyrus -> paper -> printing
- The technical infrastructure now exists for the paperless workplace
- The screen experience for health care users remains primitive
- The challenge is make the end user experience of clinical informatics both more compelling & more productive than paper
Key Public Sector Software System Design Principles (GDS 2010+)

• Start with a clear understanding of End User Needs; interviews, discovery process, hard data: the service provider or purchasing manager is not the end user.

• Do the hard work at the design & implementation stage to make the end user experience as simple & efficient as possible

• Iterate continuously (be Agile): there is always room for improvement

• Fail Early and Fail Fast

• Build Digital Services rather than web sites

• “Make things open - it makes things better”

• The end state is “Digital by Default”: effective & compelling
The UK Health Sector Challenge

• NHS has yet to adopt GDS Principles

• Reliant upon dominant suppliers with products which have not been rigorously tested to health professional end user needs

• No “sandpits” for testing IT systems on real data & real users in clinical environments

• Badly implemented IT: 10-20% loss of daily staff efficiency?

• Well implemented IT: 10-20% Gain in efficiency on a £100 Billion+ budget?
My Digital User Need Statement

• As a busy clinician, I need to be able to:

 - obtain a global and/or selective view of any case record
 - at any place and time
 - in the fastest, most efficient & effective manner
 - with linkage to any additional & relevant information systems which I may need to access

• In order to allow me to work as or more effectively, safely and efficiently than with paper records

(and noting that paper is a technology which has evolved over thousands of years to adapt to the human eye-brain-sensory interface)
The Product: The “UHS Lifelines” Electronic Patient Record Interface

- Research as to available options to meet my user need = None in 2010
- Human Computer Interaction Laboratory (HCIL) University of Maryland Lifelines concept 1996 (For Maryland Dept of Criminal Correction)
- Agile team of three at UHS working pro bono = minimal cost
- To develop & implement a functional, timeline-structured EPR to meet the clinician user need within the legacy UHS Clinical Data Environment
- Achieved in 2011 with Regional NHS Innovations Award 2011
- Goes live in 2016 after rewrite in modern DotNet code with senior institutional buy-in
The original HCIL Maryland Lifelines Concept 1996-97

<table>
<thead>
<tr>
<th>Year</th>
<th>Notes</th>
<th>Hospitalizations</th>
<th>Tests</th>
<th>Medications</th>
<th>Immunizations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1992</td>
<td>Tobacco, Depression</td>
<td>Appendectomy</td>
<td>Blood EKG, EKG</td>
<td>Prozac</td>
<td>Flu, Tdap, Tetanus</td>
</tr>
<tr>
<td>1993</td>
<td>Obesity</td>
<td>Checkup</td>
<td>Blood, Blood</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>Atrial Flutter</td>
<td>Checkup</td>
<td>X-ray</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>Flu, Pneumonia</td>
<td>Checkup</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>Knee Pain</td>
<td>Checkup</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>Fatigue, Diabetes, Diabetes</td>
<td>Checkup</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Transformative Power of Data Visualisation:

Ben Shneiderman’s design principles:
• Overview (of the entire data set or record)
• Zoom (in on detail of interest)
• Filter (out information which is not of immediate interest)

Key Principles of the visually rich Lifeline Interface:
• The passage of time is central to all human activities
• The human brain is attuned to visual clues, movement, colour & icons
• Clinical events can be displayed in series or in parallel
• Navigation through the model in three dimensions (X, Y, Zoom)
• Infinitely expandable & adaptable
UHS Lifelines Jan 2016 iteration: 2 year rolling view of a case history

This patient is not currently registered on the The Southampton Breast Cancer Data System
Click here to create new breast cancer patient record
or Click here to select a different patient

Patient-LifeTrak

Track length = 2 years
01/2014 (75) 01/2016 (77)
UHS Lifelines: The Key Features

- A “whole of life” descriptive tool for every clinical record
- Real time global electronic information access for every UHS patient
- Immediate reading of the clinical history from the icons & metadata
- Click through functionality to individual documents & reports
- A transformative tool for clinical information access
- A testbed for the transition to paperless working
- Highly intuitive for clinical & administrative staff
- An EPR interface with potential for universal application
- For Primary, Secondary (Hospital), Social Care
- With potential for academic & research exploitation
The Southampton (Breast) Cancer Data System
Exploitation of UHS Lifelines

- Requirement to develop a scalable & flexible data system for 12,000+ legacy card index & electronic records with continuous case & data accrual

- Exploiting UHS Lifelines & maximising data visualisation tools

- Introducing the UHS LifeTrak as a descriptor of any clinical journey from diagnosis to the present/final outcome

- Maximising data feeds from the UHS Clinical Data Environment

- Allowing a range of reports & data analyses

- Acting a generic test bed for a universal tool to describe the “whole of life”, episode structured course of any chronic disease of child- or adult-hood
Southampton Breast Cancer Data System: Individual Patient Record Screen

1.) Demographic

2.) Timeline

3.) Administrative and Cause of Death

4.) Data Entry

University Hospital Southampton
NHS Foundation Trust
UK Ordnance Survey maps, railway tracks, stations and the UHS LifeTrak
UHS Lifelines and the master LifeTrak

- Episodes = stations: primary diagnosis, local recurrence, metastases
- Graphic is automatically populated for each & every patient in real time
- The timeline is continuously recalibrated
- Selected lifeline documents & reports run in parallel
- Items immediately expanded into a window by clicking on microscope icons
- Evidence base Integral to the dataset
- “Patient Journey” can be read instantaneously
- Information retrieval (eg in outpatient clinics) is faster than paper records
- Individual patient record updating is manual but quick and easy
UHS Breast Cancer Data System exemplar:
Selection of a cohort of “primary chemotherapy” patients

Select your required criteria including diagnosis year(s) or age or both. (Only patients initially diagnosed/treated at UHS are selected)

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnosis from start of</td>
<td>1990</td>
</tr>
<tr>
<td>Age at Diagnosis</td>
<td>45</td>
</tr>
<tr>
<td>Cancer Type</td>
<td></td>
</tr>
<tr>
<td>Maximum Invasive Size</td>
<td></td>
</tr>
<tr>
<td>Maximum Tumour Grade</td>
<td></td>
</tr>
<tr>
<td>ER Status</td>
<td></td>
</tr>
<tr>
<td>HER2 Status</td>
<td></td>
</tr>
<tr>
<td>Status at Follow-up after</td>
<td>0</td>
</tr>
</tbody>
</table>
| N.B. The subsequent diagnosis and treatments selections affects the Lifetrak graphic only and NOT the listing to browser/Excel

Note:
Use as a powerful research tool
Use as a decision assistance tool for individual treatment

Statistical Analysis for patients aged between 15 and 75 at diagnosis where the initial diagnosis was between 1990 and 2014

<table>
<thead>
<tr>
<th>Category</th>
<th>Alive</th>
<th>Died</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients Selected</td>
<td>126 (50.6%)</td>
<td>123 (49.4%)</td>
</tr>
<tr>
<td>With subsequent recurrence</td>
<td>4 (1.6%)</td>
<td>11 (4.4%)</td>
</tr>
<tr>
<td>With subsequent metastases</td>
<td>10 (4%)</td>
<td>109 (43.8%)</td>
</tr>
<tr>
<td>Average survival from date of diagnosis to now death</td>
<td>6.1 years</td>
<td>3.2 years</td>
</tr>
</tbody>
</table>

Assigned cause of death
N/A

Breast Cancer: 115 (93.5%)
Other Cancer: 1 (0.8%)
Cardiac Disease/Failure: 2 (1.6%)
Unknown cause: 3 (4.1%)
UHS LifeTrak display of defined cohort of records in the Southampton Breast Cancer Data System

- Scrollable
- Easily read
- A rapid tool for record validation
- Link back to the individual records
- Scope for further development: eg automatic calculation of episode intervals
Summary: Lessons learned from the UHS Lifelines Project

• Healthcare informatics is a complex challenge

• A small & agile team can produce powerful outputs in health informatics at modest cost

• Ground-upwards iteration can be more effective than top down enforcement of “Grand Designs”

• Timeline structured EPR interfaces are likely to prove to be a powerful methodology for the paperless health economy
UHS Lifelines: The work continues!